On the 'Quasilinear Theory' of the Vlasov Plasma: Status of Dynamical Friction and Subcritical Growth Theory

P.H. Diamond; UCSD Maxime Lesur; Univ. Lorraine Yusuke Kosuga; Kyushu Univ.

Ackn: Y.-M. Liang, R.Z. Sagdeev, M. Malkov, J.-M. Kwon

Outlook

- QLT is <u>the</u> classic problem of nonlinear plasma theory, ~ 55 yrs old
- 'QLT' is a catch-all for many, often loosely related, ideas
- Quasilinear approaches constitute <u>the</u> working tool for calculating mean field evolution in turbulence
- As yet, several aspect of QLT remain unresolved.

Outlook, cont'd

- Here:
 - Perspective is that of an applied physicist
 - Approach is historical, though:
 - Emphasizing recent developments
 - Necessarily broad brush
 - Seek identify current issues where/how
 interdisciplinary approaches contribute? How might
 this subject be revitalized?

Outline

I) Some (scientific) history

- a) basic ideas, content (Sagdeev et al '60's)
- b) challenges I
 - Granulations, dynamical friction (Dupree et al, 70's)
 - Mode coupling and/in growth (Laval et al, 80's)
- c) Rejoinders
 - Traveling wave tube experiment (Tsunoda et al, 90's)

Outline, cont'd

- Rejoinders, cont'd
 - Momentum constraints on the B-O-T (Liang, P.D. 90's)
- II) Recent Times (Enter high resolution simulations)
 - Subcritical growth in the Berk-Breizman model (Lesur, P.D. 2013)
 - Nonlinear CDIA growth (Lesur, P.D. et al, 2014)
- * Beyond 1D: Darmet model of drift wave turbulence (Kosuga, P.D., 2011-)

Outline, cont'd

- III) Thoughts for Discussion
 - Where does all this stand?
 - Where to next?

I) Some Scientific History

- Good beginnings: Vedenov, Velikov, Sagdeev; Drummond, Pines
 - 1D Vlasov evolution / relaxation of B-O-T, CDIA

- QL system, from mean field approach with linear response

$$\epsilon(k,\omega) = 0, \quad \partial_t \langle f \rangle = \frac{\partial}{\partial v} D \frac{\partial \langle f \rangle}{\partial v} \quad \partial_t |E_k|^2 = 2\gamma_k |E_k|^2 \quad D = D(|E|^2)$$

• Key:

$$- D = \frac{q^2}{m^2} \sum_{k} |E_k|^2 \frac{|\gamma_k|}{(\omega - k\nu)^2 + |\gamma_k|^2}$$

- Resonant $\rightarrow \pi \delta(\omega kv) \rightarrow$ irreversible
- Non-resonant $\rightarrow |\gamma_k| / \omega_k^2 \rightarrow$ reversible / 'fake'
- Non-resonant diffusion for stationary turbulence is problematic. Energetics?
- Coarse graining implicit in ()
- First derivation via RPA, ultimately particle stochasticity is fundamental

- Central elements/orderings:
 - resonant diffusion, irreversibility:
 - "chaos" $\leftarrow \rightarrow$ coarse graining
 - Island overlap at resonances: $\frac{\omega}{k_{i+i}} \frac{\omega}{k_i} \le \sqrt{q\phi/m}$
 - linear response?:
 - $\tau_{ac} < \tau_{tr}$, τ_{decorr} , γ_k
 - $\tau_{ac}^{-1} = \left| \frac{d\omega}{dk} \frac{\omega}{k} \right| |\Delta k| \rightarrow \text{correlation time of wave-particle resonance}$
 - $\tau_{tr}^{-1} = k \sqrt{q\phi/m} \rightarrow$ particle bounce time in pattern
 - $\tau_{decorr}^{-1} = (k^2 D)^{1/3} \rightarrow$ particle decorrelation rate (cf. Dupree '66)

• QLT is Kubo # < 1 theory

i.e.
$$\frac{q}{m} \tilde{E} \tau_{ac} / \Delta v_T = \Delta v_T k \tau_{ac} < 1$$

but often pushed to Ku ~ 1

- QLT assumes:
 - all fluctuations are eigenmodes (i.e. neglect mode coupling)?
 - $\underline{\text{all}} \, \delta f \sim \tilde{E} \, \partial \langle f \rangle / \partial v ?$

(resemble $\delta B \sim \tilde{v} \langle B \rangle$ in MF dynamo theory)

• <u>Energetics</u> \rightarrow 2 component description

– Resonant Particles vs Waves

 $\partial_t(RPKED) + \partial_t(WED) = 0$

<u>or</u>

– Particles vs Fields

 $\partial_t(PKED) + \partial_t(FED) = 0$

- Species coupled via waves, only (CDIA)
- Issues: how describe stationary state with RP drive?

i.e.
$$D_R \left(\frac{\partial \langle f \rangle}{\partial v}\right)^2 = d_{col} \langle \left(\frac{\partial \delta f}{\partial v}\right)^2 \rangle$$
, ala' Zeldovich

- Outcome:
 - B-O-T: Plateau formation

- prediction for $|\tilde{E}_{sat}|^2 / 4\pi nT$ when plateau formed
- CDIA:
 - wave driven momentum transfer e->i
 - anomalous resistivity model (quasi-marginality)

- Why Plateau?
 - In collisionless, un-driven system, need at stationarity: $\int dv D_R (\partial \langle f \rangle / \partial v)^2 = 0$
 - So either: (collisions: RHS $\rightarrow d_{\omega l} \langle \left(\frac{\partial \delta f}{\partial v}\right)^2 \rangle$)

i) $\partial \langle f \rangle / \partial v = 0$, where $D(v) \neq 0$ on interval \rightarrow plateau

with finite amplitude waves

ii) Or $D_R = 0 \rightarrow$ fluctuation decay everywhere, $\gamma_k < 0$

• If ii), can show from QL system:

•
$$\langle f(v,t) \rangle = \langle f(v,0) \rangle + \frac{\partial}{\partial v} \left(\frac{D_R(v,t) - D_R(v,0)}{\pi \omega_{pe}^2 v^2} \right)$$

• If $D_R \to 0$ as t increases $\langle f(v,t) \rangle \approx \langle f(v,0) \rangle$

$$(D_R(0)$$
 feeble)

• But $D_R \to 0$ requires $\frac{\partial \langle f \rangle}{\partial v} < 0$, while $\frac{\partial \langle f(v,0) \rangle}{\partial v} > 0 \rightarrow$ contradiction!

So

• i) applies \rightarrow plateau formes

- Experiment: Roberson-Gentle '71
 - Beam → magnetized plasma → B-O-T (1D) "Gentle" B-O-T
 - Punchline: QLT successful where it is predicted to apply
 - N.B.: No studies of mode-coupling, fluctuation spectra
- Major question:
 - why ~ linear growth, $\delta f \approx \delta f^c$ relevant in turbulent state?

II) Challenges 70's

- Mode coupling
- Resonance
 - broadening

- Phase space eddies
- Dynamical friction
- \rightarrow Stochastic view
- → Dupree, Kadomtsev...

- Phase space vorticities
- Drag, wake
- \rightarrow Coherent view
- → Lynden-Bell, Berk,
- Roberts, Feix, Schamel

Fluctuation constituent in addition to waves \rightarrow major impact on dynamics

Granulations

- Mode coupling mediated by resonant particles
- Distorts distribution, so: (akin eddy, vortex)
- $-\delta f = f^c + \tilde{f} \longrightarrow \text{granulation}$
- Calculate $\langle \tilde{f} \rangle^2$ via $\langle \delta f^2 \rangle$ +extraction
- Poisson equation $\rightarrow \tilde{f}$ induces dynamical friction (i.e. drag), as for discreteness Granulations alter relaxation

 $\partial_t \langle \delta f^2 \rangle + T_{1,2} \langle \delta f^2 \rangle = D \left(\frac{\partial \langle f \rangle}{\partial v} \right)^2 - F \left(\frac{\partial \langle f \rangle}{\partial v} \right)$

Relative scattering, streaming

$$\frac{\partial \langle f \rangle}{\partial t} = \frac{\partial}{\partial \nu} \left[D \frac{\partial \langle f \rangle}{\partial \nu} - F \right]$$

- Implications \rightarrow mode coupling enter growth dynamics
 - Dynamical friction enters relaxation, and mean $\leftarrow \rightarrow$ fluctuation coupling
 - Interspecies drag solves stationarity problem

And:

- Introduces new routes to relaxation, subcritical growth via collisionless momentum transfer by structures
- Prediction of subcritical CDIA instability (Dupree '82) \rightarrow mostly vindicated
- Supported by Berman simulations ('83)

- A (seemingly) concrete prediction:
 - Enhanced B-O-T growth (Laval, Pesme, ...) '80's
 - $-\gamma \rightarrow (\#)\gamma_L$; wave only

> 1

- Curiously, F = 0 in theory \rightarrow retained mode coupling in $T_{1,2}$ but not in drive
- Physics: enhanced phase correlations in Cerenkov emission of plasma waves
- Attracted wide attention

C) Rejoinders

- TWT experiment (Tsunoda et al late 80's 90's)
- 'Simulate' B-O-T via
 - Beam \rightarrow resonant
 - Slow wave helix \rightarrow non-resonant
- Can program variety of spectral perturbations, and control phase initialization
- Can measure:
 - net growth of perturbations
 - distribution function

• TWT Apparatus

• Spectral evolution \rightarrow evidence for mode coupling mediated by resonant particles

• The reckoning:

Dashed \rightarrow one mode in smooth spectrum Dotted \rightarrow linear (single, weak mode) Solid \rightarrow non-rep noise

- "no deviation of frequency, ensemble averaged growth from Landau, to 10%"
- Message: mode coupling via resonant particles occurs, yet growth tracks linear Landau

- Comments
 - TWT results effectively vindicated QLT ala' 60's and demolished ALP
 - Much more might have been extracted by TWT
 - Studies of nonlinear transfer
 - Effect of adjustable dissipation in slow wave structure (see below)
 - Coordinated numerical simulation effort → ideal venue for validation of Vlasov codes
 - Time to re-visit TWT or variant?

- Comments, cont'd
 - Some thoughts on the outcome (Liang, P.D. '93)
 - Gist: momentum conservation

Well known: Balescu-Lenard evolution of 1D stable plasma leaves $\partial_t \langle f \rangle = 0$

i.e. Like particle, momentum and energy conserving collision leaves final state = initial state

: Granulations not effective in enhancing relaxation

– Complication: here system not stationary \rightarrow growing waves

• Analysis: key points

$$\begin{split} \left(\partial_{t}+T_{1,2}\right)\langle\delta f\left(1\right)\delta f\left(2\right)\rangle &=S(v)\\ S(v) &=-2\frac{q}{m}\left\langle\tilde{E}\delta f\right\rangle\partial\langle f\rangle/\partial v\\ \bullet \quad \text{For }S(v): \quad \frac{q}{m}\left\langle\delta E(1)\delta f(1)\right\rangle &=\sum_{k}{'}\left(-k^{2}\frac{q^{2}}{m^{2}}\left\langle\phi_{k}\phi_{-k}\right\rangle\pi\delta\left(\omega_{k}-kv\right)\frac{\partial f_{0}}{\partial v}-ik\frac{q}{m}\left\langle\phi_{k}\tilde{f}_{-k}\right\rangle\right)e^{2\gamma_{k}t}\\ &=\sum_{k}{'}\left[-k^{2}\frac{q^{2}}{m^{2}}\pi\delta\left(\omega_{k}-kv\right)\frac{\partial f_{0}}{\partial v}\left(\frac{4\pi n_{0}q}{k^{2}}\right)^{2}\int\frac{dv_{1}dv_{2}}{|\epsilon(k,\omega_{k}+i\gamma_{k})|^{2}}\left\langle\tilde{f}_{k}(v_{1})\tilde{f}_{-k}(v_{2})\right\rangle\right.\\ &\left.-k\frac{q}{m}\left(\frac{4\pi n_{0}q}{k^{2}}\right)\frac{\mathrm{Im}\;\epsilon(k,\omega_{k}+i\gamma_{k})}{|\epsilon(k,\omega_{k}+i\gamma_{k})|^{2}}\int dv'\left\langle\tilde{f}_{k}(v')\tilde{f}_{-k}(v)\right\rangle\right]e^{2\gamma_{k}t}.\end{split}$$

• Further:
$$\frac{q}{m} \langle \delta E(1) \delta f(1) \rangle = -\sum_{k} 'k \frac{q}{m} \frac{\gamma_k \partial \epsilon'(k, \omega_k) / \partial \omega}{|\epsilon(k, kv + i\gamma_k)|^2} \\ \times \langle \widetilde{\phi}_k \widetilde{f}_{-k}(v) \rangle e^{2\gamma_k t}.$$

• N.B.: $S(v) \sim \gamma_k$ as electrons exchange momentum with waves, only here

• Results:

• For
$$S(v)$$
: $S(v) = 2k^2 \frac{q}{m} \frac{\gamma_k / \omega_k}{\epsilon''(k,\omega_k) + \gamma_k \partial \epsilon'(k,\omega_k) / \partial \omega} \frac{\partial f_0}{\partial v}$
 $\times \langle \widetilde{\phi}_k \widetilde{f}_{-k}(v) \rangle e^{2\gamma_k t}$
 $= \frac{2}{\pi} \frac{q}{m} \frac{k^4}{\omega_k \omega_p^2} \frac{\gamma_k^L \gamma_k}{\gamma_k - \gamma_k^L} \langle \widetilde{\phi}_k \widetilde{f}_{-k}(v) \rangle e^{2\gamma_k t},$

• For
$$\gamma_k$$
:

$$\sim \tau_{ac} < \tau_c < \gamma_k^{-1}$$

$$\gamma_k \approx \gamma_k^L \left(1 - \frac{2A(k)}{\pi} \frac{\gamma_k^L}{\omega_k}\right)^{-1} \approx \gamma^L \left(1 + O\left(\frac{\gamma^L}{\omega_k}\right)\right)$$

 $\sim \tau_{ac} < \gamma_k^{-1} < \tau_c:$

$$\gamma_k \equiv \gamma^L \left(1 + \frac{2A(k)}{\pi\beta} \frac{1}{\omega_k \tau_c} \right) \approx \gamma^L \left[1 + O\left(\frac{1}{\tau_c \omega_k}\right) \right]$$

• Small <u>additive</u> correction to linear growth rate!

- Comments
 - Compare:
 - ALP: $\gamma \approx \# \gamma^L$
 - LD: $\gamma \approx \gamma^L (1 + \epsilon)$

APL inconsistent with TWT results

LD within error bars

- QLT '61 (seemingly) vindicated for Gentle B-O-T, single species
- LD explains how reconcile observation of mode coupling with QL growth

But

– Is the B-O-T representative? CDIA?

II) Recent Times (Lesur, Kosuga, P.D.)

- Subcritical growth in the B-B model (Lesur, P.D. 2013; P.D., Lesur, Kosuga Aix Fest 2009)
 - What is B-B (Berk-Breizman) model?
 - B-B ('99) based on reduced model of energetic particles (i.e. alphas) resonant with Alfven wave (TAE). Point is that resonant particle distribution evolves like 1D plasma, near resonance
 - Reduction is somewhat controversial, still
 - Analogy: beam, helix $\leftarrow \rightarrow$ TWT

EP's, bulk motion in AW $\leftarrow \rightarrow$ tokamak

Both are beam-driven instabilities

• For EP distribution

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{qE}{m} \frac{\partial f}{\partial v} = -\gamma_a \delta f + \frac{\gamma_f^2}{k} \frac{\partial \delta f}{\partial v} + \frac{\gamma_d^3}{k^2} \frac{\partial^2 \delta f}{\partial v^2}$$
$$E = re(Z), \qquad f = f_0 + \delta f$$

$$\frac{dZ}{dt} = -\frac{m\omega_p^2}{4\pi nq} \int f e^{-i\varepsilon} d\nu - \gamma_d Z \quad \leftarrow \text{ key difference}$$

- Note: collisions and 'extrinsic' γ_d
 - * γ_d resembles dissipative helix response in TWT

 \rightarrow momentum, energy exchange channel ?!

• Linearly $\gamma = \gamma_{kin} - \gamma_d$

• Useful to exploit analogy with QG fluid

- So 'phasetrophy'
$$\psi_s = \int_{-\infty}^{\infty} dv \langle \delta f_s^2
angle$$

- Wave energy
$$W = nq^2 \langle E^2 \rangle / m\omega_p^2$$

• So, for <u>single structure</u> (with single wave)

- For
$$\psi$$
: $\frac{d\Psi_s}{dt} = -2\frac{q_s}{m_s}\int_{-\infty}^{\infty}\frac{df_{0,s}}{dv}\langle E\,\delta f_s\rangle\,dv - \gamma_{\Psi}^{\rm col}\Psi_s$

- For W:
$$\frac{dW}{dt} + 2\gamma_d W = -2\sum_s u_s q_s \int \langle E \,\delta f_s \rangle \, dv$$
 $u_s = \omega_p / 2k$

– Akin to Charney-Drazin theorem:

$$\frac{dW}{dt} + 2\gamma_d W = \sum_s \frac{m_s u_s}{d_v f_{0,s}} \left(\gamma_{\Psi}^{\text{col}} + \frac{d}{dt} \right) \Psi_s$$

• Approximate solution (granulations + single wave):

$$\gamma_{\psi} \approx \frac{16}{3\sqrt{\pi}} \frac{\Delta v}{v_R} \frac{\gamma_{L,0}}{\omega_p} \gamma_d$$

- Nonlinear, $\Delta v \sim (q\phi/m)^{1/2}$
- Exploits γ_d (dissipation)

i.e. can have $\gamma_{L,0} - \gamma_d < 0$ but $\gamma_{\psi} > 0$

- $\gamma_{L,0} > 0 \leftrightarrow$ free energy
- Previous study similar (P.D. et al; 2009 Festival de Theorie proceedings), but limited to near marginal

Subcritical instability

Nonlinear growth rate

$$\gamma_{\Psi} \approx \frac{16}{3\sqrt{\pi}} \frac{\Delta v}{v_R} \frac{\gamma_L}{\omega_p} \gamma_d$$

Lesur, Diamond, PRE 2013

 \Rightarrow Nonlinear growth does not require that $\gamma_{L,c} > \gamma_d$

• Perhaps more convincing:

- Point is that even weak linear instability can be swamped by nonlinear growth → note for weak linear instability, saturation levels match those for nonlinear instability
- Establishes existence of robust exception to QLT61 ! Clearly related to γ_d dissipation channel. Limited to single structure.

- CDIA, revisited (Lesur, P.D., et al 2014)
 - Analysis and simulation of B-B model suggest re-visitation of CDIA studies (Dupree, Berman 1982, 1983)
 - Recovers subcritical/nonlinear growth for direct electron interaction?

 \rightarrow collisionless dynamical friction \rightarrow NL growth ?

- Relevant to anomalous resistivity and reconnection problems
- Seek compare:
 - CDIA wave regime (weak turbulence)
 - Phase space structure turbulence growth
 - i.e. to what extent is statistical theory relevant
- Primarily computational study

• Some key results

• For ensemble of waves, no subcritical instability

\rightarrow

- Quasilinear theory prevails in realm where it is expected to!
- These computations performed with Vlasov code
- Berman et al performed with PIC. Repetition with PIC reveals numerical noise responsible for instability

Current-driven ion-acoustic

- Comments
 - Clear departure from QLT61 observed in B-B model
 - Nonlinear growth ~ $\gamma_d \gamma_{L,0} \Delta v$
 - Subcritical growth of phase space <u>structures</u> observed in
 CDIA studies at large mass ratio
 - Structures can be quite modest in amplitude. Structure \rightarrow self bound $\Delta v \sim \tilde{f} \epsilon$
 - \rightarrow Appears to support Berman '83 simulations

- But:
 - For ensemble of waves, no subcritical growth ?!
 - Earlier cases of subcritical growth for waves linked to PIC noise.

• Where do we stand?

Old Haitian proverb:

"If you are not confused, you don't know what is going on."

- What is difference between "small structure" and a "nonlinear wave"?
 Rigorously, what is a "structure"?
- Is 'ensemble of waves' concept physically meaningful at finite amplitude?
 Should we care?
- Is QLT61 formally correct but limited to a regime of no practical relevance?
- Is QLT61 incomplete in relevant regimes?! Momentum exchange channels?!

III) Beyond 1D: the 'Darmet Model' (after Pellat, Tagger)

- A reduced model (2D+energy) of kinetic drift wave turbulence driven by resonant particles
- Suggests $Ku \ge 1 \rightarrow$ phase space structures, vortices form
- Readily amenable to simulation
 - Cf. Y. Kosuga, P.D. 2011 → see also P.D. et al, '82

Impact on transport modeling

- Conventional transport modeling by quasilinear theory (QLT)

- However, applicability of QLT *dubious* for strongly resonant turb.

CTIM, CTEM, EPM, ...

 \rightarrow 1D precession resonance, long τ_{ac}

 \rightarrow e.g. for CTIM $K\equiv \tau_{ac}/\tau_{circ}\sim 10$ CTEM $K\sim 7$ Y. Xiao, '09

Transport by strongly resonant turbulence?

Model (formulation as flux driven)

→ arguably the simplest model that captures N.L. ExB mixing + resonance via 1D precession

- \rightarrow dissipative and hydro instability
- \rightarrow zonal flow enters

TIM can have high Kubo number

$$K \equiv \tau_{ac} / \tau_{circ}$$

Packet dispersal rate

$$au_{ac}^{-1} \sim rac{k_{ heta}^2
ho^2 \sqrt{2\epsilon_0} \omega_*}{(1+k_{\perp}^2
ho^2)^2} rac{\Delta k_{ heta}}{k_{ heta}} \quad ext{for TIM}$$

$$K \sim 10$$
 for ${\omega_k au_{circ} \sim \Delta k_{ heta}/k_{ heta} \sim O(1) \over k
ho_i \sim 0.1}$

Field pattern rather coherent and resonant particles produce ExB eddys

: trapped ion granulations can form and impact turbulence dynamics, transport!

(Due weak dispersion)

circulation (eddy turn-over) rate

 $\tau_{circ}^{-1} \sim k_0 v_{Di} \Delta E$

R.B.T. $\rightarrow \quad \Delta E \sim 1/(k_0 v_{Di} \tau_c)$

 $\tau_{circ}^{-1} \sim \tau_{E \times B}^{-1}$

• - Drift resonance relatively coherent $\rightarrow K > 1$ easily satisfied (P.D. et. al. '82) \leftrightarrow 1D structure

$$K = rac{v}{|d\omega/dk_ heta-\omega/k_ heta||\Delta k_ heta|\Delta_r}$$

 \rightarrow strongly resonant structure formation likely

 \rightarrow Dynamics

- \rightarrow Physics: Ambipolarity / PV conservation
 - total dipole moment conserved, including polarization charge

$$\int dx \sum_lpha q_lpha n_lpha(x) x = const$$

- Polarization Flux \rightarrow Reynolds Force

$$\delta f_i(\frac{x-x_0}{\Delta x},\frac{E-E_0}{\Delta E})$$

 $\partial_t \left\{ \int dE \sqrt{E} \frac{\delta f_i^2}{2\langle f \rangle'|_{x_0}} + \langle V_\theta \rangle \right\} = -\nu \langle V_\theta \rangle - \langle \tilde{v}_r \delta n_e \rangle \qquad \qquad \text{- Non-acceleration Thm} \\ - \text{ Electron flux critical}$

Observe:

- even localized phase space structure dynamics \rightarrow ZF coupling appears No need for modulational instability, 4 wave interaction, ...
- For TIM regime, non-adiabatic electrons dissipative (i.e. collisional response)

$$\partial_t \left\{ \int dE \sqrt{E} rac{\delta f_i^2}{2\langle f \rangle'|_{x_0}} + \langle V_{ heta}
ight\} = -
u \langle V_{ heta}
angle + D_{DT} rac{\partial \langle n
angle}{\partial x}$$

- Observe:
 - structure + Z.F. evolution

$$\partial_t \left\{ \int dE \sqrt{E} rac{\delta f_i^2}{2\langle f
angle' |_{x_0}} + \langle V_{ heta}
angle
ight\} = -
u \langle V_{ heta}
angle + D_{DT} rac{\partial \langle n
angle}{\partial x}$$

- Charney - Drazin Non-Acceleration Theorem for H-W model

10 21

 \rightarrow ~ Exact correspondence!

0

-
$$\int dE \sqrt{E} \delta f_i^2 / 2 \langle f \rangle |_{x_0} \rightarrow$$
 equivalent to zonal pseudomomentum

- electron flux drives NET system momentum
- subcritical growth possible

Basic Structure of Theory

Dynamics: Evolution of two point phase space density correlation

$$\partial_t \langle \delta f(1) \delta f(2) \rangle + T(1,2) = P(1,2)$$

Triplet Term, life time of correlation via t urbulent mixing

$$T(1,2) = v_{Di} \bar{E}_1 \frac{\partial}{\partial y_1} \langle \delta f(1) \delta f(2) \rangle + v'_y x_1 \frac{\partial}{\partial y_1} \langle \delta f(1) \delta f(2) \rangle + \nabla_1 \cdot \langle \mathbf{v}_{E \times B}(1) \delta f(1) \delta f(2) \rangle + (1 \leftrightarrow 2)$$

Will treat via closure theory !?

AAA

production $\propto -\langle \tilde{v}_x \delta f \rangle \langle f \rangle'$

- acts as source for turbulence

- related to free energy

Analysis of Mixing

Triplet term after closure, relative coordinates:

$$T(1,2) = v_{Di} \bar{E}_{-} \frac{\partial}{\partial y_{-}} \langle \delta f(1) \delta f(2) \rangle$$
$$+ v'_{y} x_{-} \frac{\partial}{\partial y_{-}} \langle \delta f(1) \delta f(2) \rangle$$
$$- \nabla_{-} \cdot (\mathbf{D}_{-} \cdot \nabla_{-} \langle \delta f(1) \delta f(2) \rangle$$

Moment evolution solved time asymptotically strong shear

$$\langle y_{-}^{2} \rangle \rangle \cong \frac{e^{\sigma t}}{3} \left(y_{-}^{2} + \frac{\sigma}{\Delta\omega_{c}} x_{-}^{2} + \sqrt{\frac{2\sigma}{\Delta\omega_{c}}} x_{-} y_{-} + \frac{2v_{Di}^{2}}{\sigma^{2}} \bar{E}_{-}^{2} + 4\frac{v_{Di}}{\sigma} \sqrt{\frac{\sigma}{2\Delta\omega_{c}}} \bar{E}_{-} x_{-} + \frac{2v_{Di}}{\sigma} \bar{E}_{-} y_{-} \right)$$

 $\sigma = (2\Delta \omega_c {v'_y}^2)^{1/3}$: Geometric mean of ExB decorrelation rate and shear

Mixing time (deccorelation rate)

 $\langle \langle y_{-}^{2} \rangle \rangle (t = \tau_{cl}) \cong k_{0}^{-2}$ $\sigma \tau_{cl} = \ln \left(\frac{k_{0}^{2} y_{-}^{2}}{3} + \frac{k_{0}^{2} \sigma}{3\Delta\omega_{c}} x_{-}^{2} + \frac{k_{0}^{2}}{3} \sqrt{\frac{2\sigma}{\Delta\omega_{c}}} x_{-} y_{-} \right)$ $+ \frac{2v_{Di}^{2} k_{0}^{2}}{3\sigma^{2}} \bar{E}_{-}^{2} + \frac{4v_{Di} k_{0}^{2}}{3\sigma} \sqrt{\frac{\sigma}{2\Delta\omega_{c}}} \bar{E}_{-} x_{-} + \frac{2v_{Di} k_{0}^{2}}{3\sigma} \bar{E}_{-} y_{-} \right)$

Lifetime of granulations

Relative separation in turbulent field:

$$\langle\langle x_-^2\rangle\rangle + \langle\langle y_-^2\rangle\rangle \cong e^{t/\tau_c} \left(x_-^2 + y_-^2 + \frac{8\tau_c v_{Di}\bar{E}_- y_-}{3} + \frac{8\tau_c^2 v_{Di}^2\bar{E}_-^2}{3}\right)$$

Life time of clumps:

$$\begin{split} \langle \langle x_{-}^{2} \rangle \rangle + \langle \langle y_{-}^{2} \rangle \rangle &\sim k_{0}^{-2} \\ \tau_{cl} &= \tau_{c} \ln \left[k_{0}^{2} x_{-}^{2} + k_{0}^{2} y_{-}^{2} + \frac{8k_{0}^{2} \tau_{c} v_{Di} \bar{E}_{-} y_{-}}{3} + \frac{8\tau_{c}^{2} k_{0}^{2} v_{Di}^{2} \bar{E}_{-}^{2}}{3} \right]^{-1} \end{split}$$

Typical scales:

physical space $\rightarrow \quad \lesssim k_0^{-1} \sim \Delta_c$

energy space
$$\rightarrow \Delta E \sim (k_0 v_{Di} \tau_c)^{-1}$$

resonance broadening via ExB scattering

Sharp correlation at small scales

- Steady state correlation:

Schematically:

 \rightarrow observed numerically in 70-80's

(Hui '75, Dupree '75, Berman '83)

→ Drift wave turbulence, via modern computing scheme and power ???

Access to free energy (Ignore ZF, for now)

- Formation of the clumps of resonant particles (bunch of bananas)
- Scatter off electrons and release free energy
- Interplay, competition of diffusion, DF

- Net production due to electron dynamical friction:

Transport Flux

- Structure of theory (N.F. '13)

	Quasi-linear theory	Dupree-Lenard-Balescu theory	
Kubo number	$K \ll 1$	$K \gtrsim 1$	
fluctuation	eigenmodes (waves)	structures (granulations)	
Mean Evolution	Quasilinear diffusion	Lenard-Balescu	Dynamical Fr
	$-D\langle f angle'$	$-D\langle f \rangle' + F\langle f \rangle$	iction

- Transport Flux
$$\langle ilde{v}_r \delta f
angle = J_{i,i} + J_{i,e} + J_{i,pol}$$

- $J_{i,i}$ QL flux $\sim D_{\perp} \langle f
 angle'$
- $_{J_{i,e}}$ D.F. from electrons $\propto {
 m Im} \chi_e$
- $J_{i,pol}$ D.F. from zonal flow $\propto \partial_r \langle \tilde{v}_r \tilde{v}_\theta \rangle$

- Flux by D.F. can be comparable to flux by QLT:

 $\frac{J_{DF}}{J_{QLT}} \sim \frac{\overline{\mathrm{Im}\chi_e k_\theta \rho_s}}{\overline{k_\theta^2 \rho_s^2} (\omega_{\mathbf{k}}/\omega_{Di}) (c_s/\omega_{Di}) \langle f_i \rangle' \sqrt{\epsilon_0} v_{thi}^3} \sim \frac{2+3\eta_e}{\eta_i} \frac{\omega}{\nu_e/\epsilon_0} \left(\frac{\omega_{di}}{\omega}\right)^2$

Transport Flux - Detail

$$J_{i,i} = -\operatorname{Re}\sum_{\mathbf{k}\omega} k_{\theta}^{2} \rho_{s}^{2} c_{s}^{2} R_{\mathbf{k}\omega} \left\langle \left(\frac{e\tilde{\phi}}{T_{e}}\right)^{2} \right\rangle_{\mathbf{k}\omega} \langle f_{i} \rangle' + \sum_{\mathbf{k}\omega} k_{\theta} \rho_{s} c_{s} \frac{\operatorname{Im}\chi_{i}}{|\chi(\mathbf{k},\omega)|^{2}} \left\langle \frac{\widetilde{\delta n}_{i}}{n_{0}} \widetilde{\delta f}_{i}(2) \right\rangle_{\mathbf{k}\omega}$$

$$J_{i,e} = -\sum_{\mathbf{k}\omega} k_{\theta} \rho_s c_s \frac{\mathrm{Im}\chi_e}{|\chi(\mathbf{k},\omega)|^2} \left\langle \frac{\widetilde{\delta n}_i}{n_0} \widetilde{\delta f}_i(2) \right\rangle_{\mathbf{k}\omega}$$

$$J_{i,pol} = -\sum_{\mathbf{k}\omega} k_{\theta} \rho_s c_s \frac{\mathrm{Im}\chi_{pol}}{|\chi(\mathbf{k},\omega)|^2} \left\langle \frac{\widetilde{\delta n_i}}{n_0} \widetilde{\delta f}_i(2) \right\rangle_{\mathbf{k}\omega}$$

Transport by D.F. on electrons

Ion heat flux due to D.F. on electrons

electron dissipation triggers release of ion free energy

Granulations – zonal flow coupling

- Granulations \rightarrow Pol. charge scatt ering \rightarrow ZF coupling

→ sets necessary phase fo r flow coupling

 $\langle \tilde{v}_r \nabla^2_{\perp} \tilde{\phi} \rangle \sim k_{\theta} k_r \partial_R |\tilde{\phi}_{\mathbf{k}}|^2$

- Coupled dynamics:

$$\begin{split} &\frac{\partial}{\partial t} \left(\frac{v_*^i \langle v_\theta \rangle}{v_{thi}^2} + \int d^3 v \frac{\langle \delta h^2 \rangle}{2 \langle f \rangle} \right) \\ &= \int d^3 v \frac{P_{i,i} + P_{i,e}}{2 \langle f \rangle} - \int d^3 v \frac{\tau_{cl}^{-1} \langle \delta h^2 \rangle}{2 \langle f \rangle} - \nu \frac{v_*^i \langle v_\theta \rangle}{v_{thi}^2} \end{split}$$

akin to Charney-Drazin momentum the orems for PV fluids

- Quantitatively:

$$\frac{(\partial_t \langle \delta f^2 \rangle)_{Z.F.}}{(\partial_t \langle \delta f^2 \rangle)_{D.F.}} \sim \frac{\overline{k_r k_\theta}}{\overline{k_\theta^2}} \frac{\eta_e}{1 + 3\eta_e/2} \frac{\nu_e/\epsilon_0}{\sqrt{\epsilon_0}\omega_{c,i}} \frac{L_{T_e}}{L_{env}}$$

effective for steep intensity gradient region

In other words:

- Hamiltonian advection: $\partial_t f + \{f, H\} = 0$
- Mean + fluctuation conserved

$$f = \langle f \rangle + \delta f \iff q = \beta y + \omega$$
gradients!

GK Poisson equation

$$\int d^3 v f + \rho_s^2 \nabla^2 \phi = g(\phi, n_e, ...)$$
Multi-species

(Solvability? : "PV invertibility", MEM)

 \rightarrow Evolution of δf MUST drive zonal flow

Heuristics of Zonal Flows

Ambipolarity breaking → polarization charge → Reynolds stress : The critical connection

Schematically:

- Polarization charge $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) - n_e(\phi)$ polarization length scale $\rho^2 \nabla^2 \phi = n_{i,GC}(\phi) - n_e(\phi)$

so
$$\Gamma_{i,GC} \neq \Gamma_{e} \implies \rho^{2} \langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \rangle \neq 0 \iff$$
 'PV mixing'
 $\downarrow \rightarrow polarization flux \rightarrow What sets cross-phase?$

- If 1 direction of symmetry (or near symmetry):

$$\left\langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \right\rangle = -\partial_{r} \left\langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \right\rangle$$
 (Taylor, 1915)

-Flow drive: $-\rho^2 \partial_r \langle \tilde{v}_{rE} \tilde{v}_{\perp E} \rangle$ Reynolds force \longrightarrow Flow drive

Summary

Physical quantity	Predictions	Relevant Feature
Basic Scales	$\Delta x \sim \Delta y \lesssim k_0^{-1} \sim \Delta_c$ $\Delta E \lesssim T_i / (\omega_{di} \tau_c)$	need resolve turb. scales and res. broadening
Correlation in phase space	$\begin{split} &\langle \widetilde{\delta f_i}(1) \widetilde{\delta f_i}(2) \rangle \\ &\cong (\tau_{cl}(x, y, E) - \tau_c) P \end{split}$	log. div. at small scales $\lim_{1 ightarrow 2} \langle \widetilde{\delta f_i} \widetilde{\delta f_i} angle \gg au_c D_\perp \langle f angle'^2$
Frequency Spectrum	$\Delta \omega \sim \frac{F \mathrm{Im}\chi_i \mathrm{Im}\chi_e }{k_0 v_{di} \partial \chi / \partial \omega_k ^2}$	Depends both on i-free energy <i>and</i> e-diss.
Transport flux	$-D\langle f \rangle' + F\langle f \rangle$	Dynamical Friction appears as flux <i>not</i> proportional to gradient

Comments

- Model is simple, clear
- Phase space structures likely
- Numerous predictions to shoot at
- Directions:
 - Subcritical growth via electron scattering
- * Granulations and (flux driven) avalanching

 \rightarrow does Cerenkov emission enhance avalanching? Hints of yes (Xiao '09)

* – Granulation – ZF interaction

III) Thoughts for Discussion

- Where does this story stand?
 - QLT '61 vindicated for relaxation of single species B-O-T, its paradigmatic example
 - 1D conservation constraints allow reconciliation of mode coupling with observed Landau growth. This interpretation raises (implicitly) the question of how representative the classic B-O-T is.

But

- Significant departures from QLT61 appear in (even 1D) systems with multiple energy-momentum exchange channels, usually associated with multi-species
 - B-B via γ_d
 - CDIA, though structure required.

Signature of nonlinear growth

- Role of strong wave-particle resonance and phase space structure in even simple drift-zonal systems is not understood and merits further study
 - Subcritical growth?
 - Role of granulations in avalanching? (nucleate?)
 - Granulation interaction with zonal flows?

- What to Do?
 - Revitalize TWT, in coordination with modern simulation program
 - Allow variable slow wave structure dissipation $\rightarrow \gamma_d$ as in B&B \rightarrow test Lesur, P.D. model?
 - Mode coupling, beat resonance (NLLD) phenomena
 - Is a (philosophically) similar CDIA experiment possible? Many testable predictions on the record. Consider multi-ion species to deal with m/M issue. Negative ion plasma to deal with mass ratio?!
 - While corresponding basic experiment dubious, Darmet model simulation program appears doable and interesting. Coordination with GYSELA studies might identify prediction testable in confinement studies.

• A bit philosophical, but:

— What is the difference between a 'finite amplitude wave' and 'structure' i.e. 'hole'?

– Can the degree of distortion of f and its relation to subcritical and/or nonlinear growth be established or at least bounded?

So far use self trapping condition:

$$\delta f \sim \frac{\Delta v}{\epsilon}$$
 Better?